Identifiability and Stability in Blind Deconvolution under Minimal Assumptions

Yanjun Li

Joint work with Kiryung Lee and Yoram Bresler

Coordinated Science Laboratory
Department of Electrical and Computer Engineering
University of Illinois, Urbana-Champaign
Email: yli145@illinois.edu

Sep 14, 2016
Blind Deconvolution

\[u \ast v = z \]

Both \(u \) and \(v \) are unknown \(\implies \) **Ill-posed bilinear inverse problem**

- Solved with “good” priors (e.g., subspace, sparsity)

- **Empirical success in various applications** (e.g., blind image deblurring, speech dereverberation, seismic data analysis, etc.)
 - Theoretical results are limited. \(\implies \) **The focus of this presentation**
Problem Statement

- Signal: $u_0 \in \mathbb{C}^n$
- Filter: $v_0 \in \mathbb{C}^n$
- Measurement: $z = u_0 \ast v_0 \in \mathbb{C}^n$

Find (u, v)

s.t. $u \ast v = z,$

$u \in \Omega_U, v \in \Omega_V.$

Three scenarios:

1. Subspace constraints
2. Sparsity constraints
3. Mixed constraints
Problem Statement

- **Signal**: $u_0 \in \mathbb{C}^n$
- **Filter**: $v_0 \in \mathbb{C}^n$
- **Measurement**: $z = u_0 \ast v_0 \in \mathbb{C}^n$

Find (u, v)

s.t. $u \ast v = z$,

$u \in \Omega_U$, $v \in \Omega_V$.

Three scenarios:

1. Subspace constraints
2. Sparsity constraints
3. Mixed constraints
Problem Statement

- **Signal:** $u_0 \in \mathbb{C}^n$
- **Filter:** $v_0 \in \mathbb{C}^n$
- **Measurement:** $z = u_0 \otimes v_0 \in \mathbb{C}^n$

Find (u, v) such that

$$u \otimes v = z,$$

$$u \in \Omega_U, \ v \in \Omega_V.$$

Three scenarios:

1. Subspace constraints
2. Sparsity constraints
3. Mixed constraints
Problem Statement

- **Signal:** \(u_0 = Dx_0 \), the columns of \(D \in \mathbb{C}^{n \times m_1} \) form a basis or a frame
- **Filter:** \(v_0 = Ey_0 \), the columns of \(E \in \mathbb{C}^{n \times m_2} \) form a basis or a frame
- **Measurement:** \(z = u_0 \ast v_0 = (Dx_0) \ast (Ey_0) \in \mathbb{C}^{n} \)

\[
\text{(BD) Find } (x, y) \\
\text{s.t. } (Dx) \ast (Ey) = z, \\
x \in \Omega_X, y \in \Omega_Y.
\]

Three scenarios:

1. **Subspace constraints:**
 \(\Omega_X = \mathbb{C}^{m_1} \) and \(\Omega_Y = \mathbb{C}^{m_2} \)

2. **Sparsity constraints:**
 \(\Omega_X = \{ x \in \mathbb{C}^{m_1} : \|x\|_0 \leq s_1 \} \) and \(\Omega_Y = \{ y \in \mathbb{C}^{m_2} : \|y\|_0 \leq s_2 \} \)

3. **Mixed constraints:**
 \(\Omega_X = \{ x \in \mathbb{C}^{m_1} : \|x\|_0 \leq s_1 \} \) and \(\Omega_Y = \mathbb{C}^{m_2} \)
Weak and Strong Identifiability

Definition (Identifiability up to scaling)

- **Weak identifiability (\((x_0, y_0)\) is identifiable):** every solution \((x, y)\) satisfies \(x = \sigma x_0\) and \(y = \frac{1}{\sigma} y_0\) for some nonzero scalar \(\sigma\).

- **Strong identifiability (\(\Omega_X \times \Omega_Y\) is identifiable):** every \((x_0, y_0) \in \Omega_X \times \Omega_Y\) is identifiable up to scaling.

Lifting

Define \(G_{DE} : \mathbb{C}^{m_1 \times m_2} \to \mathbb{C}^n\) such that \(G_{DE}(xy^T) = (Dx) \odot (Ey)\), and \(M_0 = x_0y_0^T \in \Omega_M = \{xy^T : x \in \Omega_X, y \in \Omega_Y\}\).

(BD) Find \((x, y)\), s.t. \((Dx) \odot (Ey) = z\), \(x \in \Omega_X, y \in \Omega_Y\).

(Lifted BD) Find \(M\), s.t. \(G_{DE}(M) = z\), \(M \in \Omega_M\).

- Weak identifiability \(\iff\) Unique recovery of \(M_0\)
- Strong identifiability \(\iff\) Uniform unique recovery of all matrices in \(\Omega_M\)
Weak and Strong Identifiability

Definition (Identifiability up to scaling)

- **Weak identifiability** ((x_0, y_0) is identifiable): every solution (x, y) satisfies $x = \sigma x_0$ and $y = \frac{1}{\sigma} y_0$ for some nonzero scalar σ.
- **Strong identifiability** ($\Omega_X \times \Omega_Y$ is identifiable): every $(x_0, y_0) \in \Omega_X \times \Omega_Y$ is identifiable up to scaling.

Lifting

Define $G_{DE}: \mathbb{C}^{m_1 \times m_2} \rightarrow \mathbb{C}^n$ such that $G_{DE}(xy^T) = (Dx) \otimes (Ey)$, and $M_0 = x_0 y_0^T \in \Omega_M = \{xy^T : x \in \Omega_X, y \in \Omega_Y\}$.

(BD) Find (x, y), s.t. $(Dx) \otimes (Ey) = z$, $x \in \Omega_X, y \in \Omega_Y$.

(Lifted BD) Find M, s.t. $G_{DE}(M) = z$, $M \in \Omega_M$.

- Weak identifiability \iff Unique recovery of M_0
- Strong identifiability \iff Uniform unique recovery of all matrices in Ω_M
Single-point and Uniform Stability

\[
\text{min}_M \| G_{DE}(M) - z \|_2 , \quad \text{s.t. } M \in \Omega_B := \Omega_M \bigcap \mathcal{B}_{C^{m_1 \times m_2}}.
\]

\[\text{Definition (Stability)}\]

\text{Single-point stability at } M_0: \| G_{DE}(M) - G_{DE}(M_0) \|_2 \leq \delta \text{ for } M \in \Omega_B, \text{ only if } \| M - M_0 \|_2 \leq \varepsilon.

\text{Uniform Stability on } \Omega_B: \| G_{DE}(M_1) - G_{DE}(M_2) \|_2 \leq \delta \text{ for } M_1, M_2 \in \Omega_B, \text{ only if } \| M_1 - M_2 \|_2 \leq \varepsilon.

- Strong identifiability + single-point stability at \(M_0 \Rightarrow G_{DE}^{-1} \) is continuous at \(G_{DE}(M_0) \)
- Uniform stability on \(\Omega_B \Rightarrow G_{DE}^{-1} \) is uniformly continuous on \(\Omega_B \)
- Stability \(\Rightarrow \) solution to (Noisy BD) is accurate
Main Results: Identifiability

Sample complexity constant $d =$
- $m_1 + m_2$ – subspace constraints
- $s_1 + m_2$ – mixed constraints
- $s_1 + s_2$ – sparsity constraints

Theorem (Identifiability)

- If $n > d$, then we have weak identifiability for almost all $D \in \mathbb{C}^{n \times m_1}$ and $E \in \mathbb{C}^{n \times m_2}$.
- If $n > 2d$, then we have strong identifiability for almost all $D \in \mathbb{C}^{n \times m_1}$ and $E \in \mathbb{C}^{n \times m_2}$.

The same sample complexities hold for the case where x, y, D, E are real!
Main Results: Stability

Theorem (Stability)

\(D \in \mathbb{C}^{n \times m_1} \) and \(E \in \mathbb{C}^{n \times m_2} \) independent random, s.t.:
\[
\{(FD)(j,:)\}^n_{j=1} \sim \text{i.i.d. uniform distribution on } RB_{\mathbb{C}^{m_1}}
\]
\[
\{(FE)(j,:)\}^n_{j=1} \sim \text{i.i.d. uniform distribution on } RB_{\mathbb{C}^{m_2}}
\]

- If \(n > d \), then we have single-point stability w.p. at least
 \[1 - C' \left(\frac{\delta^2}{R^4} \right)^{n-d} \left(\frac{1}{\varepsilon^2} \right)^n. \]

- If \(n > 2d \), then we have uniform stability w.p. at least
 \[1 - C'' \left(\frac{\delta^2}{R^4} \right)^{n-2d} \left(\frac{1}{\varepsilon^2} \right)^n. \]

<table>
<thead>
<tr>
<th>Constrain Type</th>
<th>(d)</th>
<th>(C')</th>
<th>(C'')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subspace constraints</td>
<td>(m_1 + m_2)</td>
<td>(\frac{C^n}{n(n-d)})</td>
<td>(\frac{(4C)^n}{n(n-2d)})</td>
</tr>
<tr>
<td>Mixed constraints</td>
<td>(s_1 + m_2)</td>
<td>(\left(\frac{m_1}{s_1} \right)^2 \frac{C^n}{n(n-d)})</td>
<td>(\left(\frac{m_1}{s_1} \right)^4 \frac{(4C)^n}{n(n-2d)})</td>
</tr>
<tr>
<td>Sparsity constraints</td>
<td>(s_1 + s_2)</td>
<td>(\left(\frac{m_1}{s_1} \right)^2 \left(\frac{m_2}{s_2} \right)^2 \frac{C^n}{n(n-d)})</td>
<td>(\left(\frac{m_1}{s_1} \right)^4 \left(\frac{m_2}{s_2} \right)^4 \frac{(4C)^n}{n(n-2d)})</td>
</tr>
</tbody>
</table>

Here, \(C = 648 m_1 m_2 \left(1 + 2 \ln \frac{2\sqrt{\pi R^2}}{3\delta} \right) \).

Similar stability results hold for the case where \(x, y, D, E \) are real!
Main Results: Summary

- \[\text{RSNR} = \frac{\|M_0\|_2^2}{\|M - M_0\|_2^2}, \quad \text{MSNR} = \frac{\|G_{DE}(M_0)\|_2^2}{\|G_{DE}(M) - G_{DE}(M_0)\|_2^2}. \]

The probability of failure (unstable reconstruction) is roughly \(\text{RSNR}^n \cdot \text{MSNR}^{-(n-d)} \).

- Identifiability for almost all \(D, E \) \(\Longrightarrow \) Unique recovery for random \(D, E \) w.p. 1
 Stability for random \(D, E \) w.h.p. \(\Longrightarrow \) Unique recovery for random \(D, E \) w.p. 1

- Identifiability on a cone constraint set v.s. stability on the cone restricted to a ball.
 From a practical point of view, because the radius can be arbitrarily large, this restriction is of no significant consequence.
Lifting: BD as a Matrix Recovery Problem

Frequency domain measurement:

$$\tilde{z}^{(j)} := \frac{1}{\sqrt{n}} (F z)^{(j)} = (FD)^{(j,:)} x_0 (FE)^{(j,:)} y_0 + \frac{1}{\sqrt{n}} (Fe)^{(j)} = a_j^* M_0 b_j + \tilde{e}^{(j)} ,$$

where $M_0 = x_0 y_0^T$, $a_j = (FD)^{(j,:)*}$, $b_j = (FE)^{(j,:)*}$, and $\tilde{e} = \frac{1}{\sqrt{n}} Fe$. Define

$$A(M) = \begin{bmatrix} a_1^* M b_1, a_2^* M b_2, \cdots, a_n^* M b_n \end{bmatrix}^T .$$

Then

$$A(M) = \frac{1}{\sqrt{n}} F G_{DE}(M), \quad \text{and} \quad \|A(M)\|_2 = \frac{1}{\sqrt{n}} \|G_{DE}(M)\|_2 .$$

Next, we study unique / stable matrix recovery!
Unique and Stable Matrix Recovery

Theorem (Unique Matrix Recovery)

For almost all $a_j \in \mathbb{C}^{m_1}$ and $b_j \in \mathbb{C}^{m_2}$ ($j = 1, 2, \cdots, n$):

- the recovery of M_0 from $\tilde{z} = A(M_0)$ is unique if $n > d$.
- the recovery of all $M \in \Omega_M$ from $\tilde{z} = A(M)$ is unique if $n > 2d$.

Theorem (Single-point Stable Matrix Recovery, Subspace Constraints)

\[
\{a_j\}_{j=1}^n \overset{i.i.d.}{\sim} \text{Uniform}(RB_{\mathbb{C}^{m_1}}), \text{ and } \{b_j\}_{j=1}^n \overset{i.i.d.}{\sim} \text{Uniform}(RB_{\mathbb{C}^{m_2}}).
\]

If $n > m_1 + m_2$, then, with probability at least

\[
1 - \left(648 m_1 m_2 \left(1 + 2 \ln \frac{2R^2}{3\delta}\right)\right)^n \left(\frac{\delta^2}{R^4}\right)^{n-m_1-m_2} \left(\frac{1}{\varepsilon^2}\right)^n,
\]

we have $\|A(M) - A(M_0)\|_2 \leq \delta$ only if $\|M - M_0\|_2 \leq \varepsilon$.

Proof Sketch

Two main ingredients:
- The constraint set Ω_B is “small”: it has a small covering number
- The measurement vectors $\{a_j, b_j\}_{j=1}^n$ are “generic”: their probability distribution satisfies certain concentration of measure bounds

Definition (Covering Number)

For a nonempty bounded set $\Omega_B \subset \mathbb{C}^{m_1 \times m_2}$,

$$N_{\Omega_B}(\rho) := \min \left\{ N \in \mathbb{Z}^+ : \exists M_i \in \mathbb{C}^{m_1 \times m_2}, i = 1, 2, \cdots, N \right\}$$

s.t. $\Omega_B \subset \bigcup_{i \in \{1, 2, \cdots, N\}} (M_i + \rho \mathcal{B}_{\mathbb{C}^{m_1 \times m_2}})$.

Lemma (Covering Number Bound, Subspace Constraints)

$$N_{\Omega_B}(\rho) \leq \left(\frac{6\sqrt{2}}{\rho} \right)^{2m_1+2m_2} \text{ for all } 0 < \rho < 1.$$
Proof Sketch

Two main ingredients:

- The constraint set Ω_B is “small”: it has a small covering number
- The measurement vectors $\{a_j, b_j\}_{j=1}^n$ are “generic”: their probability distribution satisfies certain concentration of measure bounds

Lemma (Concentration of Measure)

Independent $\{a_j\}_{j=1}^n \overset{i.i.d.}{\sim} \text{Uniform}(RB_{\mathbb{C}^m_1})$, $\{b_j\}_{j=1}^n \overset{i.i.d.}{\sim} \text{Uniform}(RB_{\mathbb{C}^m_2})$. If $\ell \leq \|M\|_2 \leq L$, then

$$\mathbb{P} \left[\|a^* M \bar{b}\| \leq \rho \right] \leq \rho^2 g(\rho, \ell, L, R),$$

where $g(\rho, \ell, L, R)$ satisfies $\lim_{\rho \to 0} \frac{\log g(\rho, \ell, L, R)}{\log \frac{1}{\rho}} = 0$.
Proof Sketch.

Define $\Omega_\varepsilon := \{ M \in \Omega_B - M_0 : \|M\|_2 > \varepsilon \}$, then

$$P_f \leq \mathbb{P}[\exists M \in \Omega_\varepsilon \text{ s.t. } \|A(M)\|_2 \leq \delta]$$

Form a minimal cover of Ω_ε with balls of radius $\frac{\delta}{R^2} < 1$

Replace Ω_ε with this cover, and apply a union bound

$$\|A(M)\|_2 \leq \delta \implies |\langle A_j, M \rangle| \leq \delta \ (\forall j \in [m]) \quad (|z_j| \leq \|z\|_2)$$

$$\implies |\langle A_j, M_c \rangle| \leq 3\delta \ (\forall j \in [m]) \quad \text{(triangle inequality)}$$
Summary

- First tight sample complexity bounds for unique and stable blind deconvolution (the bounds are optimal, to within a few samples).
- Identifiability results hold for generic bases or frames (invalid on a set of Lebesgue measure 0). If the bases/frames are drawn from a distribution absolutely continuous w.r.t. the Lebesgue measure, then the results hold w.p. 1.
- Stability results hold w.h.p. for specified distribution. In fact, the results can be generalized to a large class of distributions that satisfy certain concentration of measure properties.
- These results are fundamental to blind deconvolution, independent of algorithms.

Details:
https://arxiv.org/abs/1507.01308
https://arxiv.org/abs/1507.01308
Thank you!